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Abstract. Since a pH sensor has become available that is suitable for this demanding autonomous measurement platform, the

marine CO2 system can be observed independently and continuously by BGC-Argo floats. This opens the possibility to detect

variability and long-term changes in interior ocean inorganic carbon storage and quantify the ocean sink for atmospheric CO2.

In combination with a second parameter of the marine CO2 system, pH can be a useful tool to derive the surface ocean CO2

partial pressure (pCO2).5

The large spatiotemporal variability of the marine CO2 system requires sustained observations to decipher trends and punctual

events (e.g., river discharge, phytoplankton bloom) but also puts a high emphasis on the quality control of float-based pH

measurements. In consequence, as the interpretation of changes depends on accurate data, and because sensor offsets or drifts

might appear, a consistent and rigorous correction procedure to process and quality-control the data has been established. By

applying standardized routines of the Argo data management to pH measurements from a pH/O2 float pilot array in the subpolar10

North Atlantic Ocean, we investigate the uncertainties and lack of objective criteria associated with the standardized routines,

notably the choice of the reference method for the pH correction (CANYON-B or LIRPH) as well the reference depth for

this correction. For the studied float array, significant differences of ca. 0.02 pH units are observed between the two reference

methods which can be used to correct float-pH data from water samples. Through comparison against discrete pH data from

water samples, an assessment of the adjusted float-pH data quality is presented. The results point out noticeable discrepancies15

near the surface of > 0.01 pH units. In the context of converting surface ocean pH measurements into pCO2 data for the purpose

to derive air-sea CO2 fluxes, we conclude that the minimum accuracy requirement of 0.01 pH units (equivalent to the minimum

pCO2 accuracy of 10 µatm for potential future inclusion into the SOCAT database) is not systematically achieved in the upper

ocean.

While the limited dataset and regional focus of our study provides only one showcase, it still calls for an additional independent20

pH reference in the surface ocean. We therefore propose a way forward to enhance the float-pH quality control procedure. In

our analysis, the current philosophy of pH data correction against climatological reference data at one single depth in the deep

ocean appears insufficient to assure adequate data quality in the surface ocean. Ideally, an additional reference point should be

taken at or near the surface where the resulting pCO2 data are of the highest importance to monitor the air-sea exchange of

CO2 and would have the potential to very significantly augment the impact of the current observation network.25
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1 Introduction

Since the beginning of the industrial era, the ocean has played a critical role by absorbing about 25% (Friedlingstein et al.,

2022) of the annual anthropogenic CO2 emissions, thereby mitigating the current climate change (IPCC, 2021). Ocean CO2

uptake causes changes in the ocean chemistry, inducing an increase in hydronium ion concentration (i.e., a decrease in oceanic

pH). Throughout the world ocean, these changes, also termed “ocean acidification” (OA; Doney et al., 2009), are already30

observed and a global surface ocean pH decline of 0.1 units since the beginning of the industrial era has been reported (Orr

et al., 2005). Depending on emission scenarios, seawater will continue to become less alkaline with a projected pH decline

ranging from 0.16 to 0.44 pH units by 2100 (e.g., Kwiatkowski et al., 2020). These changes, while being variable regionally

and along the water column (Carstensen and Duarte, 2019; Orr et al., 2005), represent a significant environmental change and

potential threat to marine organisms and marine ecosystems that needs to be elucidated.35

To assess long-term changes in ocean chemistry, oceanographic cruises were conducted and discrete water samples were

collected. These historical hydrographic data have been synthesized in databases such as the Global Ocean Data Analysis

Project (GLODAPv2) database (Olsen et al., 2016) which provides an internally consistent reference data product. However,

in addition to anthropogenic modifications, oceanic pH is a dynamic variable in response to biological, physical, and chemical

processes and changes on daily to centennial timescales, with pronounced seasonal, interannual, and decadal variability. In40

consequence, ship-based observing strategies, being skewed towards certain months and regions, especially in some places

where current sampling methods are not possible (e.g., permanently or seasonally ice-covered regions), cannot adequately

capture the dynamic spatiotemporal variability of the carbonate system parameter.

In order to improve our understanding of the oceanic CO2 cycle and to decipher any temporal change, sustained time-series

measurements at fixed stations have been carried out over the last decades (e.g., Bates et al., 2014). Nevertheless, the low45

spatial coverage associated with these sampling sites, generally located near coastal areas, precludes a rigorous description of

the open-ocean variability. Thus, these long-term data collections, with uneven regional distribution and typically moderate

temporal resolutions (i.e., bi-weekly or monthly), lead to “observational gaps” with an under-sampling of biogeochemical

variables (Tanhua et al., 2019).

To circumvent these gaps and overcome the existing severe limitations in terms of both spatial and temporal resolution,50

autonomous platforms such as moorings, profiling floats, underwater gliders, or surface vehicles have been deployed at a

global scale (Bushinsky et al., 2019; Whitt et al., 2020) and contributed to the extension of databases (Abram et al., 2019).

Recently, the development of a pH sensor suitable for deployment on autonomous platforms has extended our observation

capabilities ability of the marine CO2 system (Johnson et al., 2016).

Defined as an Essential Ocean Variable (EOV) by the Global Ocean Observing System (GOOS, www.goosocean.org), pH55

can be used to determine marine CO2 system changes in response to anthropogenic impacts. However, the key to this au-

tonomous platform expansion is the achievable and documented quality of the pH data which relies on defined practices rang-

ing from rigorous pre-deployment sensor calibration to post-deployment assurance of data accuracy and consistency (Johnson

et al., 2018). Indeed, for reliably identifying and interpreting changes accurate and consistent data are needed.
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For BGC-Argo floats data, operational procedures for physical data (temperature, salinity, pressure) qualification have been60

established, ranging from automated “Real-Time” (RT) checks to sophisticated “Delayed-Mode” (DM) adjustment (Schmechtig

et al., 2016; Wong et al., 2022). For pH, numerous delayed-mode procedures have been suggested, but a uniform, fully tested

and globally-proven correction method is still missing. Recently, in the framework of the Southern Ocean Carbon and Climate

Observations and Modelling project (SOCCOM; Russell et al., 2014), a methodology has been developed to correct nitrate, pH,

and oxygen values from sensor drifts and offsets in DM. Two Matlab tools named SAGE (SOCCOM Assessment and Graphi-65

cal Evaluation) and SAGE-O2 have been created as interfaces to support the validation and correction of float pH and oxygen

data, respectively. In the SAGE procedure (Maurer et al., 2021), the machine learning method ‘Carbonate system and Nutrient

concentration from hYdrological properties and Oxygen, Bayesian approach’ (CANYON-B; Bittig et al., 2018b), the Locally

Interpolated Regression (LIR) algorithmic methods (Carter et al., 2018) and multiple linear regression techniques (Williams

et al., 2016) are used as a reference to correct float pH data at depths of typically around 1500 dbar. The neural-network70

CANYON-B approach is based on the approach originally developed by (Sauzède et al., 2017).

We have applied the SAGE tool and the included correction methods on float pH data acquired from a pilot array established

in 2018 in the Subpolar NorthWest Atlantic (SNWA), a region of particular relevance in the marine carbon cycle. This area is a

key region for anthropogenic carbon uptake and storage (Sabine et al., 2004; Gruber et al., 2009; Khatiwala et al., 2013; Racapé

et al., 2018) as a consequence of (1) the Meridional Overturning Circulation (MOC) transporting warm and anthropogenic75

carbon-laden tropical waters by its upper limb (Sabine et al., 2004; Gruber et al., 2009; Khatiwala et al., 2013), and to (2) deep

winter convection events occurring in the Labrador and Irminger Seas which transfer anthropogenic carbon from surface to

the deep ocean (Körtzinger et al., 1999; Sabine et al., 2004; Ridge and McKinley, 2020). Moreover, it should be noted that

the North Atlantic Oscillation (NAO), through its impact on the atmospheric variability in the North Atlantic region, induces

high temporal variability on interannual (Watson et al., 2009) to decadal time scales (Leseurre et al., 2020) and may alter the80

residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation (Levine et al., 2011). In

this context, the study region can be considered both a region of highest interest and a region of methodological challenges.

This paper illustrates the performance of the proposed standard Argo quality control routines with the float pH data acquired

in the SNWA. By using float-pH data and independent pH data measured from water samples collected at nearby stations in

the SNWA area, we can provide an evaluation of (1) the impact of the choice of the at-depth reference pressure as well as85

the choice of the reference method used to correct float-pH data, (2) differences to co-located in situ discrete pH data over

the water column and within the surface layer and, (3) differences to crossovers to in situ surface pH data collected along a

ship-of-opportunity line.

2 Materials and Methods

2.1 BGC-Argo float array90

As part of an ongoing pilot study, 10 BGC-Argo floats from two manufacturers (NKE instrumentation and Teledyne Webb

Research) were deployed in the SNWA region (Fig. 1) over the 2018 2022 period. All floats were equipped with pressure,
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temperature, salinity (SBE-41CP sensor, Sea-Bird Electronics), oxygen (oxygen optode 4330 with individual multi-point man-

ufacturer calibration, Aanderaa Data Instruments), and pH sensors (SeaFETTM sensor, Sea-Bird Electronics, Inc.). As some of

BGC-Argo floats considered here are still operational, no DM data are available yet for the entire dataset. BGC-Argo data were95

obtained from the Coriolis Data Assembly Center. For inactive BGC-Argo floats, the Argo real-time quality control procedures

have been applied by the Coriolis data centre (Wong et al., 2022). Temperature and salinity measurements (derived from con-

ductivity) are recorded with accuracies of ± 0.002 °C and ± 0.005 PSU. The pH accuracy ranges from ± 0.05 as stated by

the manufacturer to ± 0.005 after data is adjusted (Johnson et al., 2017) Oxygen optodes, similar to other chemical sensors,

are known to suffer from storage drift prior to deployment (Bittig and Körtzinger, 2015; Johnson et al., 2015). SAGEO2, or100

an equivalent script, must therefore be used to correct float-oxygen data before any float-pH data correction which employs

oxygen values as ancillary data (e.g., CANYON-B). We note that the oxygen data correction employs in-air measurements rou-

tinely carried out during each float surfacing to achieve highest data accuracy (Bittig and Körtzinger, 2015; Bittig et al., 2018a).

A stringent referencing and adjustment process for the oxygen can yield accuracies around 1.5 µmol kg−1 (Bittig et al., 2018a).

105

In our case, O2 from the 10 pH-equipped Argo floats was adjusted following Argo procedures and the adjustments are

available in near-real time. In February 2023, one float had been recovered and five were still operational. We point out that,

unfortunately, the 10 deployed floats suffered from an unusually high number of manufacturer-related technical issues or

failures either of the pressure sensor (WMO 3901167, replaced from warranty by WMO 7900566), the GPS system (WMO

7900566) or the pH sensor itself (WMO 6904110, 6904111, 6904112, 6904114, 6904115). This has severely compromised the110

amount of data acquired so far in the pilot study and reduces the robustness of the conclusions. As the two most long-lasting

floats deployed in 2018 (WMO 3901668 and 3901669) showed stable pH data and the pH sensors have serial numbers not

related to a recent problem with the pH sensor’s reference electrode, they have been assumed to represent the optimum case for

the achievable performance of this current technology. In addition, float-pH data measured by the float WMO 6904112 have

been used in this study considering its position regarding the SOOP line transects and the high number of crossovers recorded.115

As a consequence, only float-pH data recorded by these three floats are used here. Moreover, adjusted temperature, salinity and

oxygen data were available for these floats. We note, that the high failure rate points at problems in sensor manufacturing in

recent years that need to be resolved in order for BGC-Argo to unfold its full potential.
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Figure 1. Map of the Northwest Atlantic with Labrador Sea and North Atlantic Current showing the trajectories of all 10 pH/O2 floats

deployed so far in our pilot study. In the legend, floats in italics are inactive. ∗ Float with a faulty pressure and/or pH sensor. ∗∗ Float

recovered. Dotted points show the last locations as of February 7th, 2023. In the inserted map, gray lines indicate the ship routes occupied

by our “Ship-of-Opportunity” platform (ICOS station DE-SOOP-Atlantic Sail). The red dot indicates the location of hydrographic station 13

visited during the Maria S. Merian cruise 94 (MSM94) in August 2020.

2.2 Reference measurements

In situ pH data measured from water samples other than the ones (e.g., GLODAP) used in the pH correction procedure120

are generally considered as reference data for float-based observations and are useful tools to independently estimate pH data

accuracy and, if needed, apply additional corrections. Nevertheless, under normal circumstances, it would be nearly impossible

to obtain specifically close crossovers between CTD casts and floats profiling during a float’s lifetime without significantly

impacting the fieldwork schedule of a research cruise. The comparison of discrete samples for pH at a deployment cast with
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float-pH data is limited due to the high sensor drift during the first cycles (Bittig and Körtzinger, 2015; Bittig et al., 2018a).125

Nevertheless, we had the unique opportunity to acquire a hydrocast with discrete pH samples with a float profile.

A few float (WMO 3901669) pH profiles occurred close to the R/V Maria S. Merian 94 (MSM94) cruise in August 2020

(Karstensen et al., 2020). Thanks to the cooperation of the chief scientist of the cruise and in a joint effort with the Euro-

Argo RISE project, a spatio-temporally close crossover has been achieved: hydrographic station 13 with discrete sampling

for pH analyses was achieved less than 1 day after and at the exact location of the float cycle 122 (Table 1, Fig. 1). The130

discrete samples were poisoned onboard following standard operating procedures (Dickson et al., 2007). They were measured

at GEOMAR for total alkalinity (TA), dissolved inorganic carbon (DIC) and pH. Since DIC and pH are very sensitive to

gas exchange they were measured in parallel as soon the bottles were opened. DIC was measured using a classical SOMMA

system (Johnson et al., 1993) with coulometric detection, while pH was measured using the HydroFIA-pH system from 4H-

Jena. The pH measurements were checked regularly against community-accepted certified reference material (CRM, Andrew135

Dickson, Scripps Institution of Oceanography, La Jolla/CA, USA). The resulting uncertainty in pH measurements for the

discrete samples was ± 0.002 pH. The pH data were measured at 25°C and atmospheric pressure and were then converted to

in situ temperature and pressure using the CO2SYS software (van Heuven et al., 2011). The matching of float-pH data and

discrete pH data was performed in density space rather than depth space to avoid biases from internal wave activity.

In the SNWA, carbon observations are also carried out, among other programs, in the frame of the Ship Of Opportunity140

Program (SOOP; Goni et al., 2010). This program aims to obtain data from autonomous instrumentation installed on volun-

teer merchant ships regularly crossing the area. Parts of the Atlantic SOOP network are operated in the European Research

Infrastructure ‘Integrated Carbon Observation System’ (ICOS) and the ‘Surface Ocean CO2 Reference Observing Network’

(SOCONET). This network can be used as a potential reference for quality control of autonomous platform datasets as the

standard-SOOP framework features, at least, routine pCO2 observations. GEOMAR has been operating, with intermissions,145

such a carbon-SOOP line for two decades in the Subpolar North Atlantic Ocean (ICOS station DE-SOOP-Atlantic Sail; Fig.

1)). In addition to the standard pCO2 instrument (Model 8050 pCO2 Measuring System, General Oceanics, Miami/FL, USA;

Pierrot et al., 2009), autonomous systems for TA (Contros HydroFIATM TA system, 4H-JENA engineering GmbH, Jena, Ger-

many) and pH measurements (Contros HydroFIATM pH system, 4H-JENA engineering GmbH, Jena, Germany) were installed

on this SOOP line in 2019 and 2021, respectively. For pH, pre- and post-calibration runs against CRM from Andrew Dick-150

son’s laboratory are performed before and after each 2.5 week roundtrip and an individual pH correction is applied to each

pH indicator bag (meta-cresol purple; MCP). Note that the CRM is certified only for DIC and TA but pH measurements are

also performed routinely for each bag and were made available to us (pers. comm. Andrew Dickson). The overall accuracy of

SOOP-pH is estimated to be about 0.003 pH units.

2.3 Correction of float-pH data155

Conceptually, the pH correction has to be done by adjusting the sensor’s reference potential (k0) as this is drifting over time

(Johnson et al., 2016). For each pH sensor, the in situ pH is proportional to the voltage between the ion sensitive field effect

transistor (ISFET) source and the reference electrode (Johnson et al., 2016). The measured potential is then converted into
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Table 1. Crossover between pH prolines from the float WMO 3901669 and a CTD cast acquired in the Labrador Sea in August 2020. The

time refers to end of profile.

Profile Time Position

Float WMO 3901669,

Cycle 122

August 15th, 2020

10:26 UTC
52.955°N-48.600°W

MSM94 CTD cast,

Station 13

August 16th, 2020

05:36 UTC
52.953°N-48.600°W

pH on the total proton scale using laboratory-based calibration coefficients. Thus, pH sensors are calibrated in the laboratory

using spectrophotometric measurements and are therefore directly related to the laboratory calibration method. Each sensor’s160

pressure and temperature coefficients, needed to compute the in situ pH, are also determined in the laboratory as described

in Johnson et al. (2016). When deployed at sea, temperature changes modify the reference potential of the sensor and in

return induce a sensor drift as the Nernst slope that transforms sensor potential to pH depends on temperature (Johnson et al.,

2016, 2017).

The general adjustment process performed in the SAGE procedure is based on the assumption that the determined offsets165

and drifts are constant across the entire water column profile (Johnson et al., 2017). Thus, the standard SAGE adjustment

process relies on a reference that is used to calculate the at-depth (typically around 1500 dbar) anomaly between measured and

estimated reference data, which is applied as an offset to the reference potential. It is propagated on the entire water column

profile by normalizing the adjustment along the profile to the temperature at which the adjustment was derived. Temperature-

normalized changes in pH are calculated by multiplying the change in pH computed at depth by the ratio of the absolute170

temperature of the sample to the absolute temperature at reference depth. To calculate the correction, the float-pH time-series

is split into distinct segments bound on either side by breakpoint nodes determined by a cost function. Then, both drift and

offset between segments are calculated by linear least-squares fit to the anomaly data series between two nodes.

In our analysis, a pH correction method called “linear adjustment’ has been implemented locally. Like in the SAGE tool, the

pH correction is calculated by this method based on the comparison to reference CANYON-B pH values calculated at a user-175

defined pressure level, where spatiotemporal variability of oceanic components is assumed to be minimal. The CANYON-B

method was chosen as a reference assuming it to be more robust in the North Atlantic region (Carter et al., 2021). Nonetheless,

two slight differences exist between SAGE and the method proposed here: (1) The correction can be applied either to each cycle

or, as in SAGE, to data within segments of consecutive profiles (with each segment calculated using a cost function). (2) When

using the segment method, a centered 7-point linear regression is used for cycles neighboring segment breakpoints to allow for180

a smoother k0 drift between segments (Fig. 2; Johnson et al., 2016). As in SAGE, offset and drift calculated with this method

are then applied to the measured float pH profiles after normalization to the temperature at which the adjustment was derived.

Finally, another correction method entitled "3-point running mean" was tested in this study. In this, the correction calculated

for each cycle (cycle-by-cycle method) was used to determine a new offset for each cycle calculated using the mean value
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Figure 2. Schematic representation of the GEOMAR float-pH data correction method. As in the SAGE tool, a linear least-square fit is

calculated between reference and float-pH data for cycles located between two breakpoint nodes to derive the offset and drift (green lines).

The blue line represents the second least-square fit obtained and applied to the elements located 3 cycles before and after the node (red dot)

in the GEOMAR method. Adapted from Maurer et al. (2021).

for the offset of the cycle before and after the considered one. This method should smooth the correction obtained with the185

cycle-by-cycle adjustment. Hereafter, every correction method different from the one in SAGE will be labelled as GEOMAR

method.

2.4 Comparisons with SOOP-based observations

To compare SOOP-based and float-based surface pH observations, we adopted the crossover definition from the Surface

Ocean CO2 Atlas (SOCAT; Sabine et al., 2013) which combines the mismatch in both distance and time between two mea-190

surements. In the SOCAT algorithm, one day of separation in time (t in days) is heuristically equivalent to 30 km of separation

in space (x in km) and 80 km is the maximum value for an acceptable crossover ((dx2+(dt*30)2)1/2; Wanninkhof et al., 2013).

Here we used an increased search window of 400 km to yield a larger number of crossovers and to optimize between spatial and

temporal mismatch. In addition, a maximum temporal mismatch of 7 days was allowed for a crossover. The SOCAT criterion

of a maximum of 80 km aims to compare two data sets of surface pCO2 observations to agree better than 2 µatm. In this study,195

we conclude that this is yet not satisfied by pH data from floats and therefore we used a larger radius to ensure more crossovers

and better statistics. The resulting crossovers were further reduced by the requirement of a maximal temperature difference be-

tween the float measurement and the temperature measurement onboard the SOOP line of 4°C (-4.0 < ∆T < 4.0). To make the
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pH measurements from both platforms comparable, the SOOP-based pH data were corrected to the surface water temperature

of the corresponding float profile. We not that for possible future implementation of the SOOP crossover method in the DM200

QC routine for float pH data this need to be further explored and more elaborate crossover criteria need to be developed.

2.5 MLD calculations

Following De Boyer Montégut et al. (2004), a density threshold of 0.03 kg m−3 with a reference depth of 10 dbar was

used to compute the Mixed Layer Depth (MLD). We used MLD to determine waters affected by deep convection events which

cause unstable biogeochemical properties also at depth that are being used for float-pH data.205

3 Results and Discussion

3.1 Uncertainties of delayed-mode float-pH data

In the following we first illustrate uncertainties associated with the current correction method for float-pH data as imple-

mented in the standardized routines from Argo data management as well as in the SAGE tool for two referencing methods

(CANYON-B and LIRPH) and two selected floats (WMO 3901668 and 3901669) which had no technical malfunctions during210

their lifetime.

3.1.1 Uncertainty associated with choice of reference depth

In order to assess the uncertainty associated with the choice of the reference depth for pH correction, differences between

float-pH data corrected using the “classical” reference pressure around 1500 dbar (Maurer et al., 2021) minus float-pH data

corrected over the pressure range 1940 and 1980 dbar were calculated for the two reference methods LIRPH and CANYON-B215

(Fig. 3A). Calculated differences between float-based pH data processed using corrections based on the two different depth-

reference pressure values ranged between -0.0003 and ca. 0.02 pH units, with mean values for all cycles of the considered floats

varying between 0.0068 and 0.0098 pH units (Fig. 3A). The choice of the reference depth thus incurs a large difference of ca.

0.01 pH units which is above a tolerable level. In this deep convection area, it therefore points to a severe limitation of the pH

correction scheme. The deepest mixed layer depth estimated from the float time-series was at 1937 dbar which, showing that220

the entire water column covered by the float profiles is probably affected. In this regard, the subpolar North Atlantic region

with its deep-reaching anthropogenic CO2 imprint is a difficult area for the unambiguous choice of a stable and unperturbed

reference depth. Recently, Fiedler et al. (2022) performed a similar exercise by changing the reference depth from ca. 1500

dbar to 1000 dbar for a float in the Eastern Tropical North Atlantic region and reported a tolerable uncertainty from this choice

of 0.0008 pH units. The order of magnitude difference in the uncertainty incurred from the reference depth choice illustrates225

the regional dependence on hydrological conditions which can severely compromise the correction method or even render it

almost useless as in the case presented here.
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Figure 3. (A) Mean differences between float-pH data corrected using the “classical” reference depth of 1500 dbar minus float-pH data

corrected with reference-pH data calculated between 1940 and 1980 dbar for the floats WMO 3901668 (circle dots) and 3901669 (triangle

dots) and for the two reference methods LIRPH (green dots) and CANYON-B (orange dots). (B) Raw float-pH data minus float-pH corrected

using the “classical” reference depth of 1500 dbar for the two-reference methods CANYON-B (orange dots) and LIRPH (green dots) and

for the floats WMO 3901668 (circle dots) and 3901669 (triangle dots). (C) Float-pH corrected using LIRPH as a reference method minus

float-pH corrected using CANYON-B as a reference method according to two distinct reference pressure depths (1500 dbar depth - red dots,

1900 dbar - gray dots) for the floats WMO 3901668 (circle dots) and 3901669 (triangle dots).
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3.1.2 Uncertainty associated with choice of reference model

Two distinct reference methods are used in the standardized Argo pH quality control, both in SAGE andin this study: the230

LIR pH regression method (LIRPH) and the CANYON-B method (Fig. 4). For both methods, uncorrected float-pH showed a

significant offset to the reference pH profiles (Fig. 3B). Moreover, a mean difference between the two reference methods of

about 0.016 pH units is observed in the SNWA (Fig. 3C).

While the CANYON-B and the LIRPH algorithmic methods are methodologically different (one is based on a neural-

network while the other uses linear regressions), both have been trained with the GLODAPv2 data set (Olsen et al., 2016)235

and tested against it. Still, ocean pH measurement practices have changed with time, leading to a variety of ways to measure.

In addition, pH calculated from DIC and TA is not always in line with spectrophotometrically measured pH (Carter et al.,

2018). In consequence, heterogeneities in pH data compilations such as GLODAPv2 exist. While CANYON-B was trained

with GLODAPv2 without modifications, Carter et al. (2018) applied a range of corrections to create a more consistent pH

data product that was used for LIRPH training (with pH being in line with “purified spectrophotometric pH measurements”).240

Given the dominance of calculated pH data in GLODAPv2, CANYON-B pH estimates are in line with calculated pH (Bittig

et al., 2018b; Carter et al., 2018). In the SAGE software, an optional CANYON-B pH data adjustment can be applied to

align estimates with spectrophotometric pH measurements made using purified dye following Carter et al. (2018, Equation

1). The recent literature (Carter et al., 2018; Johnson et al., 2018) recommends employing this reference-pH data adjustment

emphasizing that, as pH sensors are calibrated in the laboratory using spectrophotometric measurements with purified dyes,245

sensor measurements should be directly related to the laboratory calibration method. In this study, we have decided to keep

this reference-pH data adjustment to correct float-pH data.

Therefore, it is more critical than ever for the scientific community to perform intercomparisons of marine CO2 system

variables and address their associated uncertainties regarding the large and growing variety of instruments and approaches

used to measure, deduce and calculate CO2 variables (Fig. 4). Despite the undeniable strength of current algorithms, they250

both suffer from weaknesses and uncertainties due to the pH adjustment, limiting the one (LIRPH) from a complete regional

or temporal description of the current ocean acidification (Carter et al., 2018) and the other (CANYON-B) from a conversion

of the pH according to another measurement mode (Bittig et al., 2018b). In consequence, a mean difference between the two

methods of about 0.016 pH units is observed in the SNWA (Fig. 3C). In addition, using the SOCCOM array, Maurer et al.

(2021) calculated CANYON-B and LIRPH pH estimates and observed a larger uncertainty toward the surface compared to255

1500 m with mean differences (CANYON-B pH minus LIRPH pH data) of -0.025 and 0.001 pH units, respectively. This

surface discrepancy can be explained by the difficulty for algorithms to represent seasonal variability and air-sea gas exchange.

Thus, this study illustrates the need for further studies on the choice and performance of the referencing method in different

ocean regions with a special emphasis on regional biases and limitations.
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Figure 4. Spatial distributions of estimated pH data at 1500 m using different reference models: LIRPH (A) and CANYON-B (D). The map

of the spatial difference between the two estimated pH datasets is presented in panel (B). Panel (C) shows the bias ∆pH distribution (with

statistics). The upper colorbar indicates the difference between estimated pH data using the two models and the lower colorbar gives the pH

values.

3.1.3 Correction of sensor drift260

In addition to the choice of reference depth and method, some additional uncertainty can be incurred by the way how the

pH sensor drift correction is applied to the float data. Sensor response often shows different modes of variability and drift. A

typical mode of variability is sensor noise, i.e. variability entirely introduced by electronic components of the sensor. This noise

does not represent true variability in the observed quantity and should therefore be removed. In addition, long-term systematic

drift in sensor response due to changes in zero levels and/or gain factors is also an internal artefact of the sensor that needs to265

be corrected for. More rarely, sensors can also show more erratic and non-systematic variability in individual measurements or

over certain measurement periods which often has unknown reasons. These are hard to distinguish from true variability in the

observed quantity and are hence also hard to correct for. The method to apply sensor corrections in time-series measurements

should take a conservative approach trying to remove known modes of sensor variability while conserving real variability in

the data.270

The sequence of steps in the current Argo correction method uses is a delayed mode correction and first the ∆pH (raw-

corrected, at reference depth) is calculated for each cycle. In the SAGE tool, a cost function is applied for the correction of

temporal trends that determines sections over which a linear correction is calculated and then applied to each cycle included in

the respective section (Fig. 5). We also applied three different correction methods: (1) a cycle-by-cycle correction, (2) a 7-point
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linear regression method named “linear adjustment” and (3) a 3-point running mean correction method, which should smooth275

the correction obtained with the cycle-by-cycle adjustment. In every case, CANYON-B was used as the reference method as

well as the “classical” reference pressure depth of 1500 dbar.

Figure 5. Differences between raw float-pH data minus float-pH corrected using the SAGE tool (purple dots, left y-axis), the cycle-by-cycle

GEOMAR method (yellow dots, right y-axis), and the linear mean regression GEOMAR method (blue dots, right y-axis) for float WMO

3901669. The 3-point centered running mean correction method is represented by the green dots (right y-axis). In every case, CANYON-B

was chosen as a reference method and 1500 dbar were chosen as reference depth. Note that we put the data obtained with the SAGE tool and

those calculated using the GEOMAR correction on two separate y-axes for better viewing.

The profile-by-profile correction has the disadvantage that it does not remove any of the sensor noise. On the other hand, a

single linear drift correction across the entire time-series does not seem adequate either as it does not reflect the clear upward

and downwards swings in the record which are mostly interpreted as changes occurring in the sensor. Therefore, a more280

adapted method, which includes a higher order spline fit, a centered running mean or segment separation of the record into

linear drift phases has to be applied. The latter is implemented in the SAGE tool (Fig. 5). This method, however, does not

provide smooth transitions between linear drift phases and leads to step-like changes of the order of 0.01 pH units between

two consecutive profiles which appear to be unrealistic when compared to the pattern of the profile-by-profile correction. The

correction methods for temperature and salinity also ask for maximum smoothness in the corrections and to avoid introducing285

artificial jumps (Owens and Wong, 2009). Our slightly improved GEOMAR linear adjustment version (Fig. 5 top) significantly

reduces these discontinuities and artificial jumps. Generally, the linear segment methods assume linear sensor drift and step-like

changes in sensor characteristics. In our view, the sensor rather shows undulations in response with smooth and less smooth
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phases. The pH sensor behavior when the float drifts at its parking depth is in agreement with this observation (Fig. A1). Such

a pattern can perhaps be best corrected for with our modified GEOMAR segment method or alternatively with a spline fit or a290

3-point centered running mean (Fig. 5 top).

We suggest to use the improved segment or running method to avoid strong discontinuities in the pH correction which

otherwise could introduce biases in corrected pH of up to 0.01 pH units in individual profiles – a magnitude that would

strongly impair quality control measures based on referencing against other in situ pH measurement from CTD casts or surface

observation platforms (see Section 3.2).295

3.2 Comparison with in situ discrete pH

3.2.1 Crossover with CTD hydrocast

Crossover comparisons can be used as an option to independently estimate float-pH data accuracy and determine if addi-

tional corrections are needed. In 2020, we had the rare opportunity to perform a CTD hydrocast with discrete pH sampling

(cruise MSM94) at the exact location and less than 24 h after a float profile (WMO 3901669, profile 122; Fig. 1) which allows300

for direct comparison between discrete and float-based in situ pH data after the float’s initial drift period (Fig. 6C). We find

mean differences of -0.0485 and -0.0424 pH units (Fig. 6C) between the reference pH cast and the fully corrected pH of cycle

122, with the higher difference found for the “classical” reference depth of 1500 dbar.

Matching sensor data from a float with discrete samples is a non-trivial task due to complications arising from (a) the sensor

response time and (b) the uncertainty about the effective depth from which the water captured in a Niskin bottle at a trigger305

given depth stems from. There seems to be no perfect way of matching these and some uncertainty remains – especially in-

depth ranges with strong gradients in the variable of interest. Mismatch (and resulting statistical noise) due to internal wave

activity can mostly be avoided by matching profile and bottle data in density space which was performed here. However, the

likely imperfect representation of the true water sampling depth by the trigger depth (and hence corresponding CTD data) of

a Niskin bottle introduces the potential of systematic error in gradient regimes, although in a gradient of increasing pH both310

effects (a) and (b) would lead to underestimation of pH. Still, the results of this comparison therefore have to be interpreted

with caution.

The results show smallest offsets at/near the reference pressure levels and increase towards the surface. In this area, near-

surface variability and patchiness can be large and would require a perfect match in both space and time for strong conclusions

and robust significance of the surface values observations (< 30 dbar). Nevertheless, pH offsets are positively correlated with315

temperature, being smallest at the temperature of the reference depth. Overall, the results appear to be robust and not an artefact

of the matching procedure and point towards an imperfect representation of the temperature and pressure dependences of the

pH sensor (Fig. 6D). Although the actual pH values may be slightly different due to the regional variability, the observed

trend is confirmed. However, this single crossover does not allow for a solid conclusion and therefore can only serve as a

hint at shortcomings in the pH referencing method. With larger amounts of matchups between hydrocasts and pH profiles and320
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Figure 6. (A and B) Vertical profiles of pH in total scale at in situ temperature measured during the MSM94 cruise and acquired by the float

WMO 3901669 during cycles 121, 122 and 123 (gray and orange lines, respectively). Float-pH data have been corrected using the SAGE

tool with CANYON-B (black lines) as reference method using reference levels of 1500 dbar (A) and 1900 dbar (B). (C) Differences between

discrete and float-pH data (for the cycle 122) calculated after matching in density space to avoid biases from internal waves. The color code

refers to float-pH data corrected using reference levels of 1500 dbar (red diamonds) and 1900 dbar (blue diamonds). (D) ∆pH as a function

of the difference between discrete water temperature and temperature values recorded at the depth where float-pH data have been calculated

to obtain the ∆pH.

optimized SOOP-float crossover data, an independent validation and perhaps correction method could be investigated. Indeed,

SOOP data can represent an additional reference ad comparison data source.

15

https://doi.org/10.5194/bg-2023-76
Preprint. Discussion started: 22 May 2023
c© Author(s) 2023. CC BY 4.0 License.



3.2.2 Crossover with SOOP-based surface measurements

In addition to the comparison of whole pH profiles as described above, we compared float-based pH measurements in the

surface (average pH between 5 and 15 m depth) with surface pH measurements from a SOOP line crossing the North Atlantic325

every 5 weeks (see Section 2.4). The cruise track of the SOOP line crosses the area of the floats deployed in the North Atlantic

Drift region (see Figure 1). For this comparison, we used data from two floats (WMO 6904112 and WMO 3901669) between

May 2021 and October 2022. We note that further testing and improvement of this approach on larger datasets need to be

carried out to define an optimal crossover criterion. Given the limitations of the dataset (mostly due to massive manufacturing

problems of the 2020/2021 pH sensor series), no robust recommendations can be drawn from these experiments. Nevertheless,330

the assumption was made hereafter that regressions using crossovers achieved with a relatively wide search window yield a

more robust ∆pH estimate as an average of a small number of crossovers found with a smaller search window.

Figure 7 shows the differences (∆pH = SOOP - float) between SOOP-based surface pH observations and the averaged

mixed layer pH values of the two pH/O2 floats as a function of ∆T. Under the assumption that differences in pH to a major

extent are driven by differences in temperature, the ∆pH at ∆T = 0 should be a reasonable estimate of the pH offset between335

SOOP and float. By fitting a linear regression to the data, the pH offset at ∆T = 0 can be estimated more robustly. We want to

point out that this analysis has its limitations: (1) the study area is characterized by high surface variability due to mixing, (2)

the presented analysis uses only data from 2 floats during an 18-month period. However, the comparison between float-based

pH and SOOP-based pH indicates that surface pH is very consistently biased high by 0.047 pH units for the two floats. This

apparent bias is in the same direction (albeit a factor of 2 smaller) than what was found in the comparison with discrete CTD340

cast samples for surface waters. This suggests a systematic problem with float-based pH in the surface.

Table 2 summarizes the statistics associated with these crossover analyses. Standard deviations of the averages give an

indication of the coherence of the extracted dataset and hence their statistical weight. The average ∆T of the crossovers is

within ± 1°C for each float (Table 2) with the corresponding ∆S on the order ± 0.5. This indicates that the water mass

correction achieved through the regression approach is reasonably effective. Also, calculating the pH offset as a function of345

∆S (data not shown) yields ∆pH values which are statistically indistinguishable from the ones based on ∆T. In conclusion,

despite the limited number of floats and crossovers associated with this study, the preliminary results point at unacceptably

high and almost identical biases in surface pH values from the 2 floats (as seen by the values crossing the y-axis), which have

been corrected in the exact same way. This highlights that the present instructions to correct pH by a unique offset established

at-depth are insufficient, at least in our study area. An improved understanding of the temperature (and pressure) effect on the350

(individual) sensor as well as a systematic correction with carbon measurements could be the way forward to improve float-pH

data adjustment.

3.3 Implications and changes in ocean chemistry

In the following, we illustrate the implications of the identified uncertainties in the current DM process for float-pH data on the

calculation of other parameters of the marine CO2 system, and the resulting limitations for data products and scientific appli-355
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Figure 7. Offsets between SOOP pH and fully corrected float pH (y-axis) as a function of temperature difference (x-axis) for crossovers (∆x

≤ 400 km, ∆t≤ 7 d, ∆T ≤ 4°C) of three different floats. Float-pH data have been corrected with the SAGE tool using the classical reference

depth (around 1500 dbar) and CANYON-B as reference.

Table 2. Statistics of the crossover analysis for SOOP- and float-pH data. SD stands for Standard Deviation.

Float WMO
∆pH at ∆T=0 ∆T ∆S

Mean SD Mean SD Mean SD

3901669 -0.047 0.004 0.87 1.00 0.41 0.50

6904112 -0.047 0.004 -0.98 1.29 -0.40 0.58

cations. BGC-Argo float-based pH data can potentially be a very powerful tool to estimate the ocean CO2 sink when converted

to pCO2 in combination with a second marine CO2 system variable such as DIC or TA. While float-based observations for

both DIC and TA are still lacking, and as TA values are readily predictable thanks to many algorithms (e.g., the Locally Inter-

polated Alkalinity Regression (LIAR) method; Carter et al., 2018) and also less impacted by biological variations (Zeebe and

Wolf-Gladrow, 2001), TA is the parameter of choice to derive pCO2 values. Current understanding (e.g., Carter et al., 2018) is360

that TA can be predicted with a typical uncertainty of about 6 µmol kg−1 which does not include, however, potential regional

biases due to insufficient data coverage as well as biases due to unknown organic TA contributions in highly productive and/or
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coastal waters. Using this TA uncertainty, u(TA), we calculated the minimum required pH uncertainty, u(pH), that allows to

meet two pCO2 uncertainties, u(pCO2), as defined by Newton et al. (2015): the “climate goal” uncertainty of 2 µatm and the

“weather goal” uncertainty of 10 µatm (Fig. 8).365
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Figure 8. Uncertainties in pH allowed to derive pCO2 data as a function of temperature and pCO2, using uncertainties of 10 µatm (A) and 2

µatm (B) for pCO2 and an uncertainty in TA of 6 µmol kg−1.

As shown in the Figure 8A, pCO2 can be calculated with an uncertainty of 10 µatm when using pH uncertainties of around

0.01 pH units (from 0.008 to 0.016 depending on T and pCO2) , and thus reach the “weather goal” (Newton et al., 2015) which

defines maximum uncertainties of ± 10 µmol kg−1 for TA/DIC, of ± 0.02 pH units and ± 2.5% for the pCO2 (ca. 10 µatm

at 400 µatm). To derive pCO2 data with an uncertainty as the one defined by the "climate goal" criterion, and considering a

u(AT) equals to ± 6 µmol kg−1, a pH uncertainty < 0.006 pH units is required (Fig. 8B).370

At u(TA) = 6 µmol kg−1, the overall contribution of this parameter to the derived uncertainty in pCO2 is rather marginal

in comparison to the dominant impact of u(pH), and the resulting pCO2 change represents slightly more than 16% of the pH

impact when considering a 0.006 pH units pH-uncertainty. In other words, the uncertainty in predicted TA corresponds to an

uncertainty in pH of about 0.001 pH units. In consequence, and while the u(TA) is not the major obstacle to derive accurate

pCO2 data, estimated TA value still would have to be carefully estimated to then be used as a predictor variable. Regional375

and/or seasonal biases in estimated TA can be observed in some oceanic regions where high nutrient concentrations can occur,

especially during phytoplankton bloom situations. The TA-uncertainty can also be more important in areas subject to terrestrial

discharges as allochthonous matter or organic TA can be associated with non-carbonate alkalinity (Soetaert et al., 2007; Hunt

et al., 2011). This perhaps warrants specific tests on the accuracy of TA predictions in critical regions (or seasons).

In order for float-pH data to be suitable for the calculation of parameters of the marine CO2 system, and in particular pCO2380

data, with useful accuracies, the documented shortcomings in accuracy of float-pH need to be explored and addressed. Taking

into account the error propagation, the u(pH) allowed for calculating pCO2 from the pH and TA is on the order of 0.0107 ±
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0.0018 for the weather goal and 0.0056 ± 1.42×10−4 for the climate goal. In the SNWA region, this study has shown that

the combination of uncertainties associated with the choice of the reference method and reference depth as well the choice of

method to calculate the corrections for the individual float cycles can lead to uncertainties in pH well beyond what is deemed385

acceptable to exploit the pH data for CO2 calculation purposes. Our findings indicate that large biases in float-pH can occur,

particularly in the surface ocean where the data are likely of the highest scientific interest and relevance. Thus, to achieve

the required pCO2 uncertainty, it is desirable to reduce and better constrain the uncertainty associated with float-based pH

measurements to derive and depict entirely the oceanic carbon cycle.

4 Conclusions390

For correcting float-based pH measurements, the current standardized routines from Ago data management rely on a single-

point at-depth correction method along with reference algorithms such as LIRPH or CANYON-B, assuming that the adjustment

calculated at-depth yields corrections applicable to the entire profile

By using both, float-based pH data and in situ pH data from other platforms acquired in the SNWA area, this study was

able to identify uncertainties and shortcomings associated with the correction applied which raise concerns about the single395

at-depth correction on adjusted pH data. Our findings show consistent results indicating that corrected float-pH data may be

biased by several hundredths of a pH unit near the surface in the SNWA in response to deep convection events, suggesting that

similar observations might be possible in other deep convection regions. Even if the statistical significance of our findings is

limited due to the low number of comparisons available, this apparent weakness of the DM QC process of float-pH data should

be considered in light of the challenges in interpreting TA and pH-derived pCO2 data in a crucial area for ocean convections400

events and anthropogenic carbon storage. With regards to the situation observed in the SNWA, we suggest (1) to revisit the

temperature and pressure effect on the sensor, (2) to better assess the impact of biological processes on the pH estimate and

(3) to consider global crossover analysis between float-pH surface data and other platforms (SOOP lines, buoy, floats) to

independently quality controlled and perhaps correct float pH data close the surface, where the accuracy required to better

constrain the oceanic response to climate changes is the highest.405
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Appendix A: Supplementary Material420

Figure A1. (A) Differences between raw float-pH data minus float-pH corrected using the cycle-by-cycle GEOMAR method (yellow dots,

left y-axis), the linear mean regression GEOMAR method (blue dots, left y-axis) and the 3-point centered running mean correction method

(green dots, left y-axis). (B) Differences between raw float-pH data minus float-pH corrected using the SAGE tool (purple dots, left y-axis).

On every plot, the pH measured at the parking depth (right y-axis) has been added and the colorbar indicates the pressure. Black dots represent

mean pH values for each day. For the correction, in every case, CANYON-B and 1500 dbar were chosen as reference method and reference

depth, respectively.
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O. Yelekçi, R. Yu, and B. Zhou (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3-32,

doi:10.1017/9781009157896.001, 2021.

Johnson, K., Wills, K., Butler, D., Johnson, W., and Wong, C.: Coulometric total carbon dioxide analysis for marine studies: maximizing the

performance of an automated gas extraction system and coulometric detector, Marine Chemistry, 44, 167-187, https://doi.org/10.1016/0304-

4203(93)90201-X, 1993.475

Johnson, K. S., Plant, J. N., Riser, S. C., and Gilbert, D.: Deep-Sea DuraFET: Air oxygen calibration of oxygen optodes on a profiling float

array, Journal of Atmospheric and Oceanic Technology, 32, 2160-2172. https://doi.org/10.1175/JTECH-D-15-0101.1, 2015.

Johnson, K. S., Jannasch, H. W., Coletti, L. J., Elrod, V. A., Martz, T. R., Takeshita, Y., Carlson, R. J., and Connery, J. G.: Deep-

Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks, Analytical Chemistry, 88(6), 3249-3256.

https://doi.org/10.1021/acs.analchem.5b04653, 2016.480

Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Swift, D. D., Williams, N. L., Boss, E., Haëntjens,

N., Lynne D. Talley, L. D., and Sarmiento, J. L.: Biogeochemical sensor performance in the SOCCOM profiling float array, Journal of

Geophysical Research Oceans, 122, 6416–6436. https://doi.org/10.1002/ 2017JC012838, 2017.

Johnson, K. S., Plant, J. N., and Maurer, T. L.: Processing BGC-Argo pH data at the DAC level, v1.0, Argo data management,

https://doi.org/10.13155/57195, 2018485

Karstensen, J., Begler, C., Gerke, L., Handmann, P., Hans, A.-C., Lösel, C., Martens, W., Niebaum, N., Olbricht, H. D., Posern, C., Rudloff,

D., Witt, R., and Wutting, P. J.: Western Subpolar North Atlantic transport variability, Cruise No. MSM94, 02. August - 06. September

2020, Emden (Germany) - Emden (Germany). In MARIA S. MERIAN-Berichte (MSM94, pp. 1-47), Gutachterpanel Forschungsschiffe,

https://doi.org/10.48433/crmsm94,2020.

23

https://doi.org/10.5194/bg-2023-76
Preprint. Discussion started: 22 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F.,

and Sabine, C. L.: Global ocean storage of anthropogenic carbon, Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013,

2013.

Körtzinger, A., Rhein, M., and Mintrop, L.: Anthropogenic CO2 and CFCs in the North Atlantic Ocean-A comparison of man-made tracers,

Geophysical Research Letters, 26(14), 2065–2068, https://doi.org/10.1029/1999GL900432, 1999.490

Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton,

A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A. and Ziehn, T.: Twenty-

first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model

projections, Biogeosciences, 17(13), 3439-3470. https://doi.org/10.5194/bg-17-3439-2020, 2020.

Levine, N. M., Doney, S.C., Lima, I., Wanninkhof, R., Bates, N.R. and Feely, R.A.: The impact of the North Atlantic Oscillation on the495

uptake and accumulation of anthropogenic CO2 by North Atlantic Ocean mode waters, Global Biogeochemical Cycles, 25, GB3022,

https://doi.org/10.1029/2010GB003892, 2011.

Leseurre, C., Lo Monaco, C., Reverdin, G., Metzl, N., Fin, J., Olafsdottir, S. and Racapé, V.: Ocean carbonate system variability in the North

Atlantic Subpolar surface water (1993–2017), Biogeosciences, 17(9), 2553-2577, https://doi.org/10.5194/bg-17-2553-2020, 2020.

Maurer, T. L., Plant, J. N., and Johnson, K. S: Delayed-Mode Quality Control of Oxygen, Nitrate, and pH Data on SOCCOM Biogeochemical500

Profiling Floats, Frontiers in Marine Sciences, 8, 683207, https://doi.org/10.3389/fmars.2021.683207, 2021.

Newton J.A., Feely R. A., Jewett E. B., Williamson P. and Mathis J.: Global Ocean Acidification Observing Network: Requirements and

Governance Plan, Second Edition, GOA-ON, http://www.goa-on.org/docs/GOA-ONplanprint.pdf,2015.

Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,

Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F. and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an

internallyconsistent data product for the world ocean, Earth System Science Data, 8(2), 297-323, https://doi.org/10.5194/essd-8-297-2016,

2016.505

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.

M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B. and Yool, A.:

Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437(7059), 681-686.

https://doi.org/10.1038/nature04095, 2005.

Owens, W. B. and Wong, A., P., S.: An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats510

by θ–S climatology, Deep Sea Research Part I: Oceanographic Research Papers, 56(3), 450-457. https://doi.org/10.1016/j.dsr.2008.09.008,

2009.

Pierrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Lüger, H., Johannessen, T., Olsen, A., Feely, R. A. and Cosca, C. E.: Recom-

mendations for autonomous underway pCO2 measuring systems and data-reduction routines, Deep Sea Research Part II: Tropical Studies in

Oceanography, 56(8-10), 512-522. https://doi.org/10.1016/j.dsr2.2008.12.005, 2009.515

Racapé, V., Zunino, P., Mercier, H., Lherminier, P., Bopp, L., Pérèz, F. F. and Gehlen, M.: Transport and storage of anthropogenic C in the North

Atlantic Subpolar Ocean, Biogeosciences, 15, 4661–4682, https://doi.org/10.5194/bg-15-4661-2018, 2018.

Ridge, S.M. and McKinley, G.A.: Advective Controls on the North Atlantic Anthropogenic Carbon Sink, Global Biogeochemical Cycles, 34(7),

e2019GB006457, https://doi.org/10.1029/2019GB006457, 2020.

Russell, J., Sarmiento, J., Cullen, H., Hotinski, R., Johnson, K., Riser, S. and Talley, L.: The Southern Ocean Carbon and Climate Observations520

and Modeling Program (SOCCOM), Ocean Carbon and Biogeochemistry News, 7(2), 1-5, 2014.

24

https://doi.org/10.5194/bg-2023-76
Preprint. Discussion started: 22 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Sauzède, R., Bittig, H. C., Claustre, H., Pasqueron de Fommervault, O., Gattuso, J.-P., Legendre, L. and Johnson, K. S.: Estimates of Water-

Column Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks,

Frontiers in Marine Science, 4, 128, https://doi.org/10.3389/fmars.2017.00128, 2017.

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B.,525

Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The oceanic sink for anthropogenic CO2, Science, 305(5682), 367-371,

https://doi.org/10.1126/science.1097403, 2004.

Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl,

J. et al.: Surface Ocean CO2 Atlas (SOCAT) gridded data products, Earth System Science Data, 5(1), 145-153, https://doi.org/10.5194/essd-

5-145-2013, 2013.530

Schmechtig, C., Thierry, V. and Team, T. B. A.: Argo quality control manual for biogeochemical data (1.0), Bio-Argo group,

https://doi.org/10.13155/40879, 2016.

Takeshita, Y., Johnson, K. S., Coletti, L. J., Jannasch, H. W., Walz, P. M. and Warren, J. K.: Assessment of pH dependent errors in spectropho-

tometric pH measurements of seawater, Marine Chemistry, 223, 103801, https://doi.org/10.1016/j.marchem.2020.103801, 2020.

Soetaert, K., Hofmann, A., Middelburg, J., Meysman, F. and Greenwood, J.: The effect of biogeochemical processes on pH, Marine Chemistry,535

105(1), 30-51, https://doi.org/10.1016/j.marchem.2006.12.012, 2007.

Tanhua, T., McCurdy, A., Fischer, A., Appeltans, W., Bax, N., Currie, K., DeYoung, B., Dunn, D., Heslop, E., Glover, L. K., Gunn,

J., Hill, K., Ishii, M., Legler, D., Lindstrom, E., Miloslavich, P., Moltmann, T., Nolan, G., Palacz, A. and Wilkin, J.: What We Have

Learned From the Framework for Ocean Observing: Evolution of the Global Ocean Observing System, Frontiers in Marine Science, 6,

https://www.frontiersin.org/article/10.3389/fmars.2019.00471, 2019.540

van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E. and Wallace, D. W. R.: MATLAB Program Developed for CO2 System Calculations.

ORNL/CDIAC-105b, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,

Tennessee, https://doi.org/10.3334/CDIAC/otg.CO2SYSMATLABv1.1,2011.

Watson, A. J., Schuster, U., Bakker, D. C., Bates, N. R., Corbière, A., González-Dávila, M., Friedrich, T., Hauck, J., Heinze, C., Johannessen,

T., Körtzinger, A., Metzl, N., Olafsson, J., Olsen, A., Oschlies, A., Padin, X. A., Pfeil, B., Santana-Casiano, J. M., Steinhoff, T., Telszewski,

M., Rios, A. F., Wallace, D. W. and Wanninkhof, R.: Tracking the variable North Atlantic sink for atmospheric CO2, Science, 326(5958),

1391-3, https://doi.org/10.1126/science.1177394, 2009.

Wanninkhof, R., Bakker, D., Bates, N., Olsen, A., Steinhoff, T. and Sutton, A.: Incorporation of Alternative Sensors in the SO-

CAT Database and Adjustments to Dataset Quality Control Flags, http://cdiac.ornl.gov/oceans/Recommendationnewsensors.pdf. Car-

bon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee,

https://doi.org/10.3334/CDIAC/OTG.SOCATADQCF,2013.

Whitt, C., Pearlman, J., Polagye, B., Caimi, F., Muller-Karger, F., Copping, A., Spence, H., Madhusudhana, S., Kirkwood, W., Grosjean, L.,545

Fiaz, B. M., Singh, S., Singh, S., Manalang, D., Gupta, A. S., Maguer, A., Buck, J. J. H., Marouchos, A., Atmanand, M. A. and Khalsa, S. J.:

Future Vision for Autonomous Ocean Observations, Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.00697, 2020.

Williams, N. L., Juranek, L. W., Johnson, K. S., Feely, R. A., Riser, S. C., Talley, L. D., Russell, J. L., Sarmiento, J. L. and Wan-

ninkhof, R.: Empirical algorithms to estimate water column pH in the Southern Ocean, Geophysical Research Letters, 43(7), 3415-3422,

https://doi.org/10.1002/2016GL068539, 2016.550

Wong, A., Keeley, R., Carval, T. and Team, A. D. M.: Argo Quality Control Manual for CTD and Trajectory Data (3.6) [Pdf], Ifremer,

https://doi.org/10.13155/33951, 2022.

25

https://doi.org/10.5194/bg-2023-76
Preprint. Discussion started: 22 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in seawater : equilibrium, kinetics, isotopes, Elsevier Oceanography Book Series, 65, 346 pp, Ams-

terdam, ISBN:0444− 50946− 1,2001.

26

https://doi.org/10.5194/bg-2023-76
Preprint. Discussion started: 22 May 2023
c© Author(s) 2023. CC BY 4.0 License.


